Doubters point to the fact that intelligence and creativity have strong genetic roots that aren’t easily altered. And the sheer complexity of the brain and its component parts makes simplistic thinking seem dumb when it doesn’t seem dangerous.

For now, there’s limited evidence backing claims for the “hard” smart drugs. Studies based on Alzheimer’s patients and other victims of brain trauma show promise, but researchers warn that those effects may not translate to healthy users. Drugs can’t fix what isn’t broken.

So for the time being, the smartest way to take smart drugs is with a grain of salt and a gallon of caution. Smart drugs aren’t easily altered. And the sheer complexity of the brain and its component parts makes simplistic thinking seem dumb when it doesn’t seem dangerous.

Stay Smart!

Food for Thought

Smart Drugs

Vitamins & Nutrients

Get Smart!

Doubters point to the fact that intelligence and creativity have strong genetic roots that aren’t easily altered. And the sheer complexity of the brain and its component parts makes simplistic thinking seem dumb when it doesn’t seem dangerous.

For now, there’s limited evidence backing claims for the “hard” smart drugs. Studies based on Alzheimer’s patients and other victims of brain trauma show promise, but researchers warn that those effects may not translate to healthy users. Drugs can’t fix what isn’t broken.

So for the time being, the smartest way to take smart drugs is with a grain of salt and a gallon of caution. Smart drugs aren’t easily altered. And the sheer complexity of the brain and its component parts makes simplistic thinking seem dumb when it doesn’t seem dangerous.
“Smart” drug users go a step further, hoping that mega-doses of benign chemicals can raise brain levels of the precursors the body needs to assemble such neurotransmitters and otherwise fine-tune mental and biological processes.

Are smart drugs natural?

Some are. And we’ve known about them for a long time. Take fish, for example. We’ve all heard fish called “brain food,” and it looks like it isn’t called that for nothing. There’s evidence that seafood bolsters the brain through a nutrient called dimethylamino-ethanol, or DMAE. In animal tests, DMAE has been shown to improve memory and learning, increase energy levels, and elevate mood.

Other “smart” foods and nutrients seem to work in similar ways—by driving up brain levels of fuel needed for neurotransmitter replenishment.

How are they different?

They’re different in lots of ways. For starters, unlike the kinder, gentler nutrient neighbors, these chemicals are often powerful pharmacological agents that produce a variety of far-reaching effects. In fact, most “hard” smart drugs are used medically to treat specific diseases and medical conditions—from dizziness and age spots to injury-related brain damage or Alzheimer’s disease.

How many smart nutrients are there?

In general, smart nutrients fall into three basic groups:

Diet supplements. Many users start the day with a balanced breakfast of such supplements as vitamin B-5 and choline. They’re converted in the brain to acetylcholine, a neurotransmitter that figures into memory and learning.

Amino acids. Leading players in the smart drug diet, amino acids such as phenylalanine and tyrosine serve as building blocks for body proteins and the transmitters that regulate arousal, concentration, and energy.

Herbs. Ginseng, gingko biloba, and gotu kola—the three G’s of ancient Chinese medicine—are among the most commonly used “smart” herbs and may sharpen memory and concentration by boosting blood flow in the brain.

Are smart drugs safe?

Yes, no, and not necessarily. Compared with most medications, even “hard” smart drugs seem relatively side-effect free when taken in prescribed doses for approved medical uses.

It’s when they’re not taken as directed or when they’re taken to ward off hypothetical risks that worries arise. Few studies have tracked the drugs’ effects in healthy users. And researchers wonder about the potential for problems among smart-drug pioneers gulping down untested combinations of chemicals—often in doses exceeding those approved for medical use.

Problems linked to smart nutrients are similar. Because it is possible to get too much of a good thing. Large amounts of some nutrients, particularly amino acids, can add as much to the work-load of the liver and kidneys as a similar amount of food. And some vitamins—particularly vitamins A, D, E, and K—can be harmful in high doses.

Unlike the kinder/gentler buzz often linked to natural products, some smart drugs trigger full-fledged psychoactive effects.

Other risks center on the way the products are sold, rather than the substances themselves. Since dietary products are legally classified as nutritional supplements, they don’t have to meet the same standards of safety and testing as do prescription drugs. That means that products which carry potentially harmful effects—choline, for instance, can cause diarrhea, while large doses of phenylalanine can cause problems for those with high blood pressure—are often sold without specific warning labels.

What’s ‘hard’ about them?

It’s hard to pigeonhole them, for one thing. And it’s harder still to predict their potential actions and side effects.

Because unlike their kinder, gentler nutrient neighbors, these chemicals are often powerful pharmacological agents that produce a variety of far-reaching effects. Most “hard” smart drugs are legal—but hard to come by. Doctors usually won’t recommend them merely to treat curiosity about their alleged “smart” effects.

Others can be obtained—often legally—through international pharmaceutical suppliers.

A variety of web sites have made information about necessary procedures and likely distributors easily accessible, fueling the explosion of interest in “smart” chemical agents in recent years.

Other “smart” foods and nutrients seem to work in similar ways—by driving up brain levels of fuel needed for neurotransmitter replenishment.

Thinking caps. “Smart” nutrients may be big boosts (and getting bigger all the time), but worries wonder if they also carry big risks.

Vasopressin (Diapid®). A pituitary hormone marketed as a nasal spray to improve bladder control in diabetics, it also triggers release of acetylcholine.

Hydergine. One of the most widely-used treatments for senility, hydergine is believed to stimulate nerve cell growth and protein synthesis in the brain.

Piracetam (Nootropyl®). Widely used in Europe to treat alcoholism, senility, stroke, and Alzheimer’s disease, piracetam has no approved medical use in the U.S. today, according to the Food and Drug Administration. The drug is believed to aid development of new brain cell receptors.

Most “hard” smart drugs are legal—but hard to come by. Since they’re prescribed for specific medical conditions, doctors usually won’t recommend them merely to treat curiosity about their alleged “smart” effects.

Other risks center on the way the products are sold, rather than the substances themselves. Since dietary products are legally classified as nutritional supplements, they don’t have to meet the same standards of safety and testing as do prescription drugs. That means that products which carry potentially harmful effects—choline, for instance, can cause diarrhea, while large doses of phenylalanine can cause problems for those with high blood pressure—are often sold without specific warning labels.